Motor Neurons

Specification and Maturation of Spinal Interneurons
2005 Seed Grant
Kamal Sharma, Ph.D.
The University of Chicago

Neuronal diversity is a hallmark of the vertebrate nervous system. Dr. Sharma’s goal is to understand how neuronal diversity is generated in the vertebrate embryonic spinal cord. Vertebrate genomes have a limited number of genes. Mechanisms that can amplify the number of pretein insoforms encoded by these genes are likely to play a critical role in specification of multiple neuronal subtypes. Alternative splicing ofpre-mRNAs is one such mechanism. It is estimated that in vertebrates splicing ofpre mRNAs generates a large proportion (30-60%) of mRNAs. Factors that regulate cell type specific alternative splicing of pre-mRNAs are likely to play a critical role in generation of neuronal diversity. Dr. Sharma’s laboratory proposes to investigate the role of splicing factors in generation of motor neuron diversity in the spinal cord and test whether these factors regulate alternative splicing of pre-mRNAs that encode preteins required for motor neuron development.

At this time stem cells are thought to be the most promising therapy for neurodegenerative diseases. In two devastating disease conditions, ALS and SMA, motor neurons in the spinal cord degenerate. Can these cells be replaced? Dr. Sharma’s research is focused on understanding how motor neurons are generated. They wish to learn from the embryos how to make motor neurons from simple precursors. Their findings would find direct use in targeting stem cells to a motor neuron fate.

Other Grants

Rebekah C. Evans, Ph.D., Georgetown University
In Vivo and Ex Vivo Dissection of Midbrain Neuron Activity During Exercise
Exercise is important for the health of the body and the mind. Exercise promotes learning and reduces symptoms of brain-related diseases such as Parkinson’s disease and Alzheimer’s disease. However, it…
William J. Giardino, Ph.D. Stanford University
Deciphering the Neuropeptide Circuitry of Emotional Arousal in Narcolepsy
This research project aims to investigate the neural mechanisms of a specific type of brain cell called neuropeptide neurons within a region of the brain’s amygdala network called the bed…
Howard Gritton, Ph.D., University of Illinois
Attention Mechanisms Contributing to Auditory Spatial Processing.
Our world is composed of a rich mixture of sounds. We often process sounds including speech in the presence of many other competing auditory stimuli (e.g., voices in a crowded…
Nora Kory, Ph.D., Harvard University
Elucidating the Fates and Functions of Lactate in the Brain
The human brain requires significant energy to function. Despite accounting for only 2% of our body weight, the brain consumes a substantial 20% of the body’s energy, relying on a…