BL-OG: Selective, minimally invasive and activity dependent self-regulation of thalamic bursting

2014 Scientific Innovations Award
Christopher I. Moore, Ph.D.
Department of Neuroscience
Brown University

A “burst” is a brief period of high-frequency activity in a neuron, an event that can have a powerful impact on brain circuits. Overly-exuberant bursting—for example, when bursts occur repeatedly in the same cell at a high rate—is thought to be a major contributor to symptoms in diseases like Parkinson’s or epilepsy. Here, Dr. Moore and his lab describe a set of studies to test a new method by which cells can detect and regulate their own bursting. They employ a natural form of light production— bioluminescence—to have individual cells signal when they express a burst. These ‘emitters’ are paired with optogenetic sensors, elements that sit in the cell membrane and decrease burst probability when they detect light. Using this entirely biological strategy, cells can provide their own ‘deep brain stimulation,’ changing ongoing activity only when they detect they are entering into a maladaptive pattern, obviating the need for chronic electrode implants. Such self-regulation could lead to new strategies for treating altered activity patterns in disease, and would be a powerful tool for testing the impact of these activity patterns on behavior and/or brain circuit function.

Other Awards

Angelique Bordey, Ph.D., Yale University
The Role of Ribosomes in Synaptic Circuit Formation and Socio-Communicative Deficits
Our proposal aims at identifying a molecular mechanism responsible for autism-like socio-communicative defects in the developmental disorder, tuberous sclerosis complex (TSC). TSC is a genetic disorder with a 30-60% incidence…
Adam E. Cohen, Ph.D., The University of North Carolina at Chapel Hill
To spike or not to spike? Mapping dendritic computations in vivo.
The brain is made of neurons, and neurons convert synaptic inputs to spiking outputs. How does a neuron decide when to spike?
Gina Turrigiano, Ph.D., Brandeis University
Homeostatic Maintenance of Neocortical Excitation-inhibition Balance by Ciliary Neuropeptidergic Signaling
Brain circuit wiring is adjusted during adolescence to generate fully functional circuits, and this process depends on an interaction between genetics and experience. During this period of experience-dependent development, excitatory…
Gregory Scherrer, Ph.D., The University of North Carolina at Chapel Hill
Mechanisms of Affective States and Drug Discovery at the Intersection of Chronic Pain and Opioid Addiction
Pain is normally a sensation that we experience when our body is exposed to damaging stimuli, such as the noxious heat of an open flame. However, when chronic, pain becomes…