BL-OG: Selective, minimally invasive and activity dependent self-regulation of thalamic bursting

2014 Scientific Innovations Award
Christopher I. Moore, Ph.D.
Department of Neuroscience
Brown University

A “burst” is a brief period of high-frequency activity in a neuron, an event that can have a powerful impact on brain circuits. Overly-exuberant bursting—for example, when bursts occur repeatedly in the same cell at a high rate—is thought to be a major contributor to symptoms in diseases like Parkinson’s or epilepsy. Here, Dr. Moore and his lab describe a set of studies to test a new method by which cells can detect and regulate their own bursting. They employ a natural form of light production— bioluminescence—to have individual cells signal when they express a burst. These ‘emitters’ are paired with optogenetic sensors, elements that sit in the cell membrane and decrease burst probability when they detect light. Using this entirely biological strategy, cells can provide their own ‘deep brain stimulation,’ changing ongoing activity only when they detect they are entering into a maladaptive pattern, obviating the need for chronic electrode implants. Such self-regulation could lead to new strategies for treating altered activity patterns in disease, and would be a powerful tool for testing the impact of these activity patterns on behavior and/or brain circuit function.

Other Awards

Chaolin Zhang, Ph.D., Columbia University
Human-specific Alternative Splicing, Brain
Development, and Ciliopathies
Like movie frames needing to be edited to tell an engaging story, pieces of genetic information stored in DNA for each gene need to be sliced and rejoined, through a…
Jason Shepherd, Ph.D. University of Utah
Virus-like Intercellular Signaling Underlying Autoimmune Neurological Disorders
Dr. Shepherd’s lab discovered that a brain gene critical for memory and cognition, Arc, has biochemical properties like retroviruses such as HIV. Arc protein can form virus-like protein capsids that…
Yuki Oka, Ph.D., California Institute of Technology
Molecular Mechanisms of Osmolality Sensing in the Mammalian Brain
Animals constantly detect and process sensory signals to react appropriately. External sensory information (e.g., light and sound) serves as prominent environmental cues to guide behavior. On the other hand, our…
Angelique Bordey, Ph.D., Yale University
The Role of Ribosomes in Synaptic Circuit Formation and Socio-Communicative Deficits
Dr. Bordey and her lab’s proposal aims at identifying a molecular mechanism responsible for autism-like socio-communicative defects in the developmental disorder, tuberous sclerosis complex (TSC). TSC is a genetic disorder…