Cortical Function & Behavior

Optogenetics in the Behaving Primate: Using Light to Study Cortical Function
2012 Scientific Innovations Award
W. Martin Usrey, Ph.D.
Center for Neuroscience University of California, Davis

All of our conscious perceptions and cognitive actions depend critically on the neural computations performed by cortical circuits—the network of connections made by neurons in the cerebral cortex. Given the central importance of cortical circuits in mediating complex behavior, it is essential that we have the tools necessary to study these circuits during behavior, as disruption of cortical processing underlies numerous disease states and disorders, including epilepsy, schizophrenia, and Alzheimer’s disease.

Dr. Usrey and his lab propose a strategy for studying the function of cortical circuits in the behaving non-human primate using the latest technology for selectively inactivating specific classes of cortical neurons. This strategy, called optogenetics, uses light to silence cortical neurons that have been transfected to express the light-sensitive chloride pump called halorhodopsin, which is derived from phototaxic bacteria. Using an innovative approach, they will selectively express this inhibitory pump in the subclass of cortical neurons that provide feedback communication to the thalamus. These feedback neurons are believed to play a critical role in providing the thalamus with top-down cognitive signals that modulate the strength of thalamocortical communication, a role that has yet to be directly tested. In implementing this novel use for optogenetics to study corticothalamic circuits in the behaving primate, Dr. Usrey will develop an optical stimulation system that is compatible with both electrophysiological and fMRI recording methods. As a consequence, the strategy and tools they develop will have broad application to all areas of neuroscience and provide a much needed bridge between molecular, cellular, systems, and cognitive neuroscience.

Other Awards

Angelique Bordey, Ph.D., Yale University
The Role of Ribosomes in Synaptic Circuit Formation and Socio-Communicative Deficits
Our proposal aims at identifying a molecular mechanism responsible for autism-like socio-communicative defects in the developmental disorder, tuberous sclerosis complex (TSC). TSC is a genetic disorder with a 30-60% incidence…
Adam E. Cohen, Ph.D., Harvard University
To spike or not to spike? Mapping dendritic computations in vivo.
The brain is made of neurons, and neurons convert synaptic inputs to spiking outputs. How does a neuron decide when to spike?
Gina Turrigiano, Ph.D., Brandeis University
Homeostatic Maintenance of Neocortical Excitation-inhibition Balance by Ciliary Neuropeptidergic Signaling
Brain circuit wiring is adjusted during adolescence to generate fully functional circuits, and this process depends on an interaction between genetics and experience. During this period of experience-dependent development, excitatory…
Gregory Scherrer, Ph.D., The University of North Carolina at Chapel Hill
Mechanisms of Affective States and Drug Discovery at the Intersection of Chronic Pain and Opioid Addiction
Pain is normally a sensation that we experience when our body is exposed to damaging stimuli, such as the noxious heat of an open flame. However, when chronic, pain becomes…