Epigenetic Mechanisms Linking Cerebral Cortical Cell Types to Gene Expression and Connectivity

2017 Scientific Innovations Award
Edward Callaway, Ph.D.
Systems Neurobiology Laboratories
The Salk Institute for Biological Studies

Brain circuits develop through an interaction between genetics and the environment. Previous studies have shown that there are at least two distinct phases in brain development. During a first genetically determined stage, gene expression dictates the emergence of cell types and their specific connections to establish a basic scaffold. Sensory experience and interactions with the environment then further shape and refine these connections. Nevertheless, the postnatal or adolescent onset of brain circuit disorders including schizophrenia and autism that have predisposing genetic factors, argue that there is in fact a more complex and intimate interplay between genetics and the environment. Here Dr. Callaway’s lab proposes to test hypotheses emerging from recent observations suggesting specific brain circuits and epigenetic mechanisms that might be involved in these processes. These foundational studies would provide a framework for detailed investigations of the underlying mechanisms and how they can go wrong in neurodevelopmental disorders.

Other Awards

Chaolin Zhang, Ph.D., Columbia University
Human-specific Alternative Splicing, Brain
Development, and Ciliopathies
Like movie frames needing to be edited to tell an engaging story, pieces of genetic information stored in DNA for each gene need to be sliced and rejoined, through a…
Jason Shepherd, Ph.D. University of Utah
Virus-like Intercellular Signaling Underlying Autoimmune Neurological Disorders
Dr. Shepherd’s lab discovered that a brain gene critical for memory and cognition, Arc, has biochemical properties like retroviruses such as HIV. Arc protein can form virus-like protein capsids that…
Yuki Oka, Ph.D., California Institute of Technology
Molecular Mechanisms of Osmolality Sensing in the Mammalian Brain
Animals constantly detect and process sensory signals to react appropriately. External sensory information (e.g., light and sound) serves as prominent environmental cues to guide behavior. On the other hand, our…
Angelique Bordey, Ph.D., Yale University
The Role of Ribosomes in Synaptic Circuit Formation and Socio-Communicative Deficits
Dr. Bordey and her lab’s proposal aims at identifying a molecular mechanism responsible for autism-like socio-communicative defects in the developmental disorder, tuberous sclerosis complex (TSC). TSC is a genetic disorder…