Mapping and Restoring Synaptic Connectivity in Brain Disorders

2016 Scientific Innovations Award
Thomas Biederer, Ph.D.
Department of Neuroscience
Tufts University

Dr. Biederer’s work focuses on how nerve cells in the brain communicate with each other through cellular connections called synapses. Synapses are formed and remodeled in the maturing and adult brain to rewire circuits. Synaptic aberrations are linked to autism spectrum disorders and schizophrenia. This proposal aims to map the underlying disease-linked synaptic changes and investigate novel interventions. Our approach will be based on animal models of autism spectrum disorders and schizophrenia, using genetically modified mice that harbor mutations in genes that cause these disorders in humans. These mouse models replicate core features of these brain diseases. First, we will develop methods to visualize for the first time the synaptic connections that are used during cognitive processes. We will employ this method to map connectivity changes in models of autism and schizophrenia. Second, we will introduce specific genes to intervene in the mature brain and increase the formation of connections. We will test whether this intervention helps the brain to re-wire itself and improves behavioral functions in autism spectrum disorders and schizophrenia. We expect this research to help us better understand synaptic wiring during cognition and to determine how we can use the body’s own ability to organize connectivity to restore deficits in brain disorders.

Other Awards

Gregory Scherrer, Ph.D., The University of North Carolina at Chapel Hill
Mechanisms of Affective States and Drug Discovery at the Intersection of Chronic Pain and Opioid Addiction
Pain is normally a sensation that we experience when our body is exposed to damaging stimuli, such as the noxious heat of an open flame. However, when chronic, pain becomes…
Shigeki Watanabe, Ph.D., Johns Hopkins University
Intrinsic and Extrinsic Mechanisms Underlying Synaptic Proteostasis
Waste management and sustainability are major challenges humans face in the 21st-century. As you concentrate and think about these issues, nerve cells in your brain must deal with the exact…
Ilana Witten, Ph.D. Princeton University
A Role for Dopamine During Rest and Sleep in Memory Consolidation
One of the most fundamental functions of the nervous system is to form memories of salient experiences. What neural mechanisms enables some experience to turn into permanent memories, while the…
Sandeep Robert Datta, M.D., Ph.D., Harvard University
Probing Sensation and Behavior in Autism Spectrum Disorder Models
Autism Spectrum Disorders (ASDs) are characterized by repetitive behaviors and deficits in the core domains of language development and social interactions. While many ASD patients exhibit deficits in sensory processing,…