Aberrant Synaptic Organization in Tremor Disorders

2018 Seed Grant
Sheng-Han Kuo, M.D.
Columbia University

Tremor is a prevalent and often debilitating disorder for many individuals; however, the cause of tremor remains poorly understood. We have previously identified alterations in the cerebellum, the brain region important for motor coordination, in tremor patients. Now, we will study the relationship between this brain pathology and tremor by establishing a mouse model with similar pathological alterations in the cerebellum. We will study tremor characteristics and the alterations of neuronal activities in this novel mouse model, and we will further identify ways that could suppress or enhance tremor by pharmacology and neuromodulation. To further understand how tremor is generated from the abnormal neuronal connections in the brain, we will use novel neuroscience tools to specifically suppress neuronal activities or to disrupt neuronal connections and assess how these manipulations could influence tremor and the abnormal neuronal activities. The results of our proposal will establish a new platform to screen drug therapies for tremor.

Other Grants

Rebekah C. Evans, Ph.D., Georgetown University
In Vivo and Ex Vivo Dissection of Midbrain Neuron Activity During Exercise
Exercise is important for the health of the body and the mind. Exercise promotes learning and reduces symptoms of brain-related diseases such as Parkinson’s disease and Alzheimer’s disease. However, it…
William J. Giardino, Ph.D. Stanford University
Deciphering the Neuropeptide Circuitry of Emotional Arousal in Narcolepsy
This research project aims to investigate the neural mechanisms of a specific type of brain cell called neuropeptide neurons within a region of the brain’s amygdala network called the bed…
Howard Gritton, Ph.D., University of Illinois
Attention Mechanisms Contributing to Auditory Spatial Processing.
Our world is composed of a rich mixture of sounds. We often process sounds including speech in the presence of many other competing auditory stimuli (e.g., voices in a crowded…
Nora Kory, Ph.D., Harvard University
Elucidating the Fates and Functions of Lactate in the Brain
The human brain requires significant energy to function. Despite accounting for only 2% of our body weight, the brain consumes a substantial 20% of the body’s energy, relying on a…