Determining the cell-autonomous role of GABAergic inhibition in visual processing

2015 Seed Grant
Michael Higley, M.D., PhD.
Yale University

The activity of neurons in the brain is determined by the interplay of excitatory and inhibitory synaptic inputs to each cell. Alterations in neuronal inhibition are thought to play key roles in several neuropsychiatric disorders. However, it has been difficult to study the normal function of inhibition in the intact animal, because large-scale changes in inhibitory signaling lead to gross perturbation of brain activity. Here, we use a recently developed approach to disrupt inhibition in only a few neurons of the mouse brain and monitor the activity of these cells using a powerful form of microscopy. Thus, we will investigate how disruption of inhibition leads to changes in cell function without the confounding changes in overall brain activity. These experiments will give us important new insights into how neuronal activity in the healthy brain is generated and how it may be altered in disease.

Other Grants

Lindsay M. De Biase, Ph.D., University of California Los Angeles
The role of microglial lysosomes in selective neuronal vulnerability
Synapses, the sites of signaling between neurons in the brain, play essential roles in learning, memory, and the health of neurons themselves. An enduring mystery is why some neurons are…
How the nervous system constructs internal models of the external world
As animals navigate their environments, they construct internal models of the external sensory world and use these models to guide their behavior. This ability to incorporate ongoing sensory stimuli into…
Xiaojing Gao, Ph.D., Stanford University
When Neural Circuits Meet Molecular Circuits: Quantitative Genetic Manipulation with Single-cell Consistency
Cells are the building blocks of our bodies. We get sick when the cells “misbehave”. The way modern gene therapies work is to introduce genes, fragments of DNA molecules that…
Rafiq Huda, Ph.D., Rutgers University
Conducting the orchestra of movement—functional role of striatal astrocytes in health and disease
Movement requires coordinated activity across a large brain-wide network. The striatum is a particularly important part of this circuit; it integrates motor-related information from many distinct brain regions to regulate…