Determining the Cell-autonomous Role of GABAergic Inhibition in Visual Processing

2015 Seed Grant
Michael Higley, M.D., PhD.
Yale University

The activity of neurons in the brain is determined by the interplay of excitatory and inhibitory synaptic inputs to each cell. Alterations in neuronal inhibition are thought to play key roles in several neuropsychiatric disorders. However, it has been difficult to study the normal function of inhibition in the intact animal, because large-scale changes in inhibitory signaling lead to gross perturbation of brain activity. Here, we use a recently developed approach to disrupt inhibition in only a few neurons of the mouse brain and monitor the activity of these cells using a powerful form of microscopy. Thus, we will investigate how disruption of inhibition leads to changes in cell function without the confounding changes in overall brain activity. These experiments will give us important new insights into how neuronal activity in the healthy brain is generated and how it may be altered in disease.

Other Grants

Sarah C. Goetz, Ph.D., Duke University
Uncovering a Novel Role for Primary Cilia in Eph/Ephrin Signaling in Neurons
2022 Seed GrantSarah C. Goetz, Ph.D. Duke University Women’s Council Seed Grant Primary cilia are tiny projections from cells that function like an antenna- they receive and may also send…
Erin M. Gibson, Ph.D., Stanford University
Circadian Regulation of Oligodendroglial Senescence and Metabolomics in Aging
2022 Seed GrantErin M. Gibson, Ph.D.Stanford University The brain consists of two main classes of cells, neurons and glia. Glia make-up more than half of the cells in the brain…
Yvette Fisher, Ph.D., University of California, Berkeley
Dynamic Modulation of Synaptic Plasticity During Spatial Exploration
2022 Seed GrantYvette Fisher, Ph.D.University of California, Berkeley The Virginia (Ginny) & Roger Carlson Seed Grant Cognitive flexibility is critical for appropriately adjusting thoughts and behaviors to meet changing demands…
Byoung Il Bae, Ph.D., University of Connecticut
Unique Vulnerability of Developing Human Cerebral Cortex to Loss of Centrosomal Protein
2022 Seed GrantByoung Il Bae, Ph.D.University of Connecticut Carl & Marilynn Thoma Foundation Seed Grant The cerebral cortex is the largest and outermost part of the human brain. It is…