Dissecting Molecular and Cellular Mechanisms for Communication Across the Microbiota-Gut-Brain Axis

Elaine Hsiao, Ph.D.
University of California, Los Angeles

Women’s Council Seed Grant Recipient

As the body’s control center, the brain integrates complex sensory information and rapidly responds to the needs and experiences of every body system. In line with the finding that our bodies are comprised of up to 10X more bacterial cells than human cells, which contribute 360X more genes than does the human genome, it is now known that the brain communicates bidirectionally with the resident microbes that make up “us”. Increasing evidence indicates that the gut microbiome fundamentally impacts the development and function of the nervous system, modifying complex behaviors, neurotransmitter signaling, transport of chemicals between the blood and brain, activation of brain immune cells and global brain gene expression. Such long-range interactions between the brain and microbiome support the ability of microbe-based therapies to treat various symptoms of neurological diseases in mice and humans. Overall, that indigenous microbes have the remarkable capacity to modulate neural activity and behavior suggests that elucidating the interactions between microbes and the nervous system will provide new insights into brain development and function, and potentially uncover tractable strategies for treating complex nervous system disorders. Currently, mechanisms underlying how the gut microbiota signals to the brain are lacking and little is known about the precise functions of particular bacterial species. To uncover key mechanisms that enable interactions between the microbiota and brain, we will examine how peripheral neuronal activity is affected by the gut microbiota with aims to identify specific microbes and microbial signals that modulate neuronal activity.

Other Grants

Sarah C. Goetz, Ph.D., Duke University
Uncovering a Novel Role for Primary Cilia in Eph/Ephrin Signaling in Neurons
2022 Seed GrantSarah C. Goetz, Ph.D. Duke University Women’s Council Seed Grant Primary cilia are tiny projections from cells that function like an antenna- they receive and may also send…
Erin M. Gibson, Ph.D., Stanford University
Circadian Regulation of Oligodendroglial Senescence and Metabolomics in Aging
2022 Seed GrantErin M. Gibson, Ph.D.Stanford University The brain consists of two main classes of cells, neurons and glia. Glia make-up more than half of the cells in the brain…
Yvette Fisher, Ph.D., University of California, Berkeley
Dynamic Modulation of Synaptic Plasticity During Spatial Exploration
2022 Seed GrantYvette Fisher, Ph.D.University of California, Berkeley The Virginia (Ginny) & Roger Carlson Seed Grant Cognitive flexibility is critical for appropriately adjusting thoughts and behaviors to meet changing demands…
Byoung Il Bae, Ph.D., University of Connecticut
Unique Vulnerability of Developing Human Cerebral Cortex to Loss of Centrosomal Protein
2022 Seed GrantByoung Il Bae, Ph.D.University of Connecticut Carl & Marilynn Thoma Foundation Seed Grant The cerebral cortex is the largest and outermost part of the human brain. It is…