High-density neural recording of dysfunctional memories in animal models of mental disease

2014 Seed Grant
David J. Foster, Ph.D.
Department of Neuroscience
Johns Hopkins University

Understanding the neural basis of mental diseases such as schizophrenia and autism is a major challenge in neuroscience. One major roadblock is the lack of basic understanding of how neural circuits contribute to the cognitive processes that are impaired in these diseases. A recent focus in patient populations has been on the “default mode network” of brain areas such as prefrontal cortex and hippocampus that are particularly active during quite rest and free thinking. Such areas exhibit marked impairments in patients. Interestingly, activity in the default network is associated with high-level cognitive functions such as episodic memory, imagination, and consideration of the perspectives of others, thus providing a framework for understanding the neural basis of diseases such as schizophrenia and autism. We will investigate a fascinating correlate of this activity in mice, in which the hippocampus represents sequences of locations corresponding to memories of previously experienced behavioral trajectories through space, but on a 20-fold faster timescale. We will explore how this activity is disrupted in models of cognitive disease, and probe possible molecular mechanisms for this disruption. We will further use powerful genetic techniques to gain experimental control over these activity patterns in the brain. These studies will yield fundamental insights into mechanisms of high-level cognition, with the potential for developing and testing therapeutic interventions for cognitive disease.

Other Grants

Sarah C. Goetz, Ph.D., Duke University
Uncovering a Novel Role for Primary Cilia in Eph/Ephrin Signaling in Neurons
2022 Seed GrantSarah C. Goetz, Ph.D. Duke University Women’s Council Seed Grant Primary cilia are tiny projections from cells that function like an antenna- they receive and may also send…
Erin M. Gibson, Ph.D., Stanford University
Circadian Regulation of Oligodendroglial Senescence and Metabolomics in Aging
2022 Seed GrantErin M. Gibson, Ph.D.Stanford University The brain consists of two main classes of cells, neurons and glia. Glia make-up more than half of the cells in the brain…
Yvette Fisher, Ph.D., University of California, Berkeley
Dynamic Modulation of Synaptic Plasticity During Spatial Exploration
2022 Seed GrantYvette Fisher, Ph.D.University of California, Berkeley The Virginia (Ginny) & Roger Carlson Seed Grant Cognitive flexibility is critical for appropriately adjusting thoughts and behaviors to meet changing demands…
Byoung Il Bae, Ph.D., University of Connecticut
Unique Vulnerability of Developing Human Cerebral Cortex to Loss of Centrosomal Protein
2022 Seed GrantByoung Il Bae, Ph.D.University of Connecticut Carl & Marilynn Thoma Foundation Seed Grant The cerebral cortex is the largest and outermost part of the human brain. It is…