Odor Perception

Understanding how nerve cells are wired together into functional circuits is essential to understanding how the brain works. Traditional anatomical techniques can reveal the structure of neuronal circuits. However, determining which nerve cells actually communicate with one another in a complex circuit is more challenging. Recent advances in genetics have ushered in a new age of functional circuit mapping. We can genetically ‘tag’ specific populations of neurons in the intact mouse brain with a light-activated channel, allowing us to selectively activate spatially-defined subsets of neurons with light. Using this photostimulation-based approach, we plan to map the strengths of local circuit connections in the olfactory bulb, a part of the brain that processes sensory information about smell. We use the olfactory system because it is well-characterized, genetically tractable, and functionally important to the animal. The research described here will allow us to address fundamental questions about sensory processing that were previously not possible to address using traditional techniques. Future work will focus on how the activation of specific circuits using light elicits or influences odor perception. The ‘optogenetic’ approach described here can also be further exploited to study other parts of the mammalian brain.

Other Grants

Lindsay M. De Biase, Ph.D., University of California Los Angeles
The role of microglial lysosomes in selective neuronal vulnerability
Synapses, the sites of signaling between neurons in the brain, play essential roles in learning, memory, and the health of neurons themselves. An enduring mystery is why some neurons are…
How the nervous system constructs internal models of the external world
As animals navigate their environments, they construct internal models of the external sensory world and use these models to guide their behavior. This ability to incorporate ongoing sensory stimuli into…
Xiaojing Gao, Ph.D., Stanford University
When Neural Circuits Meet Molecular Circuits: Quantitative Genetic Manipulation with Single-cell Consistency
Cells are the building blocks of our bodies. We get sick when the cells “misbehave”. The way modern gene therapies work is to introduce genes, fragments of DNA molecules that…
Rafiq Huda, Ph.D., Rutgers University
Conducting the orchestra of movement—functional role of striatal astrocytes in health and disease
Movement requires coordinated activity across a large brain-wide network. The striatum is a particularly important part of this circuit; it integrates motor-related information from many distinct brain regions to regulate…