Optical Integrators for Monitoring Activity in Circuits and Cells

2014 Seed Grant
Evan Miller, Ph.D.
Department of Chemistry
University of California, Berkeley

Optical imaging has been a fantastically powerful tool for studying the activity of neurons in functional circuits. However, current tools are based on a reversible sensing approach that restricts neurobiologists to measuring activity during a very small temporal window. This restricts two types of experiments 1) it limits the ability to track activity across large regions of the brain, because generating an image of millions of neurons in three dimensions within several hundred milliseconds is technically difficult, and 2) it restricts interrogation of dynamic patterns of activity to live-cell imaging techniques such as fluorescence microscopy. For higher resolution studies, one would like to employ techniques such as super resolution light microscopy or electron microscopy, which are not amenable to live-cell imaging. We aim to develop molecular tools to enable the dissection of functionally connected networks of neurons at high spatial and temporal resolution.

Other Grants

Sarah C. Goetz, Ph.D., Duke University
Uncovering a Novel Role for Primary Cilia in Eph/Ephrin Signaling in Neurons
2022 Seed GrantSarah C. Goetz, Ph.D. Duke University Women’s Council Seed Grant Primary cilia are tiny projections from cells that function like an antenna- they receive and may also send…
Erin M. Gibson, Ph.D., Stanford University
Circadian Regulation of Oligodendroglial Senescence and Metabolomics in Aging
2022 Seed GrantErin M. Gibson, Ph.D.Stanford University The brain consists of two main classes of cells, neurons and glia. Glia make-up more than half of the cells in the brain…
Yvette Fisher, Ph.D., University of California, Berkeley
Dynamic Modulation of Synaptic Plasticity During Spatial Exploration
2022 Seed GrantYvette Fisher, Ph.D.University of California, Berkeley The Virginia (Ginny) & Roger Carlson Seed Grant Cognitive flexibility is critical for appropriately adjusting thoughts and behaviors to meet changing demands…
Byoung Il Bae, Ph.D., University of Connecticut
Unique Vulnerability of Developing Human Cerebral Cortex to Loss of Centrosomal Protein
2022 Seed GrantByoung Il Bae, Ph.D.University of Connecticut Carl & Marilynn Thoma Foundation Seed Grant The cerebral cortex is the largest and outermost part of the human brain. It is…