Parkinson’s Disease by Rajeshwar Awatramani

Parkinson’s disease (PD), a severely debilitating adult-onset neurodegenerative condition, is characterized by a substantial depletion of a subset of midbrain dopamine neurons (mDA). This loss of mDA accounts for most motor deficits observed in this disease. Recent studies have revealed that specific subsets of mDA are lost in PD. This selective mDA neuron susceptibility in PD highlights heterogeneity of the mDA system. Thus, replacing specific subtypes of mDA, as opposed to generic mDA, has been highlighted as an important goal of stem cell based therapies for PD 15.
Our goal is to understand how different mDA subtypes are generated. Here, we propose experiments to define how in the embryo, midbrain progenitor cells are directed by specific gene/gene combinations to yield distinct mDA subtypes. To do so, we will indelibly label specific progenitor cell populations using conditional genetic techniques we and others have developed, and determine what subtypes of mDA are produced from distinct progenitor pools. These experiments will define the developmental basis for mDA diversity. Understanding the developmental cascades underlying mDA diversity will be critical for generating stem cell derived therapies or models of PD.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…