Endoplasmic reticulum structure and function in neuronal maintenance

2015 Seed Grant
Anjon Audhya, Ph.D.
University of Wisconsin – Madison

Our overall goal is to define new mechanisms that sustain and enhance neuron viability and function during development and aging. The functional characterization of TFG, which has been implicated in several axonopathies including hereditary spastic paraplegia, Charot-Marie-Tooth Disease, and proximal dominant hereditary motor and sensory neuropathy, will contribute both to our understanding of the pathomechanisms underlying these diseases and reveal general requirements for lifelong axonal maintenance. Collectively, our studies may uncover new, unifying mechanisms that underlie a variety of neurodegenerative disorders, and establish a stemcell based model system, which is both facile and tractable, and can ultimately gauge the value of therapeutic treatments that are currently under development.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…