Optical Integrators for Monitoring Activity in Circuits and Cells

2014 Seed Grant
Evan Miller, Ph.D.
Department of Chemistry
University of California, Berkeley

Optical imaging has been a fantastically powerful tool for studying the activity of neurons in functional circuits. However, current tools are based on a reversible sensing approach that restricts neurobiologists to measuring activity during a very small temporal window. This restricts two types of experiments 1) it limits the ability to track activity across large regions of the brain, because generating an image of millions of neurons in three dimensions within several hundred milliseconds is technically difficult, and 2) it restricts interrogation of dynamic patterns of activity to live-cell imaging techniques such as fluorescence microscopy. For higher resolution studies, one would like to employ techniques such as super resolution light microscopy or electron microscopy, which are not amenable to live-cell imaging. We aim to develop molecular tools to enable the dissection of functionally connected networks of neurons at high spatial and temporal resolution.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…