How does loss of SHANK3 in human neurons affect neuronal connectivity in the brain?

2016 Seed Grant
Oleksandr Shcheglovitov, Ph.D.
University of Utah

Genetic abnormalities in synaptic proteins and abnormal brain connectivity are common in individuals with autism spectrum disorders (ASDs). However, whether and how autism-related mutations cause abnormal 5 connectivity in the brain is unknown. I previously characterized deficits in excitatory synaptic transmission in neurons derived from induced pluripotent stem cells (iPSCs) acquired from patients with ASDs. These deficits were largely caused by loss of a single copy of the gene encoding SHANK3, a postsynaptic density scaffolding protein of excitatory synapses. The goal of this project is to determine whether loss of SHANK3 in human neurons affects their structural and functional integration into neuronal circuits of the brain. I hypothesize that the loss of SHANK3 in human iPSC-derived neurons will result in the loss of specific neuronal inputs on these neurons when grafted into the prefrontal cortex of the mouse brain. I will test this hypothesis by transplanting SHANK3-deficient iPSC-derived neurons from patients with ASDs into mouse brains and determining whether these cells establish abnormal synaptic connections with local and remote brain regions. This study will substantially advance our understanding of the molecular, cellular, and circuitry deficits associated with ASDs and provide information for the development of new therapeutic strategies for ASD patients.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…