Motor Neurons

Specification and Maturation of Spinal Interneurons
2005 Seed Grant
Kamal Sharma, Ph.D.
The University of Chicago

Neuronal diversity is a hallmark of the vertebrate nervous system. Dr. Sharma’s goal is to understand how neuronal diversity is generated in the vertebrate embryonic spinal cord. Vertebrate genomes have a limited number of genes. Mechanisms that can amplify the number of pretein insoforms encoded by these genes are likely to play a critical role in specification of multiple neuronal subtypes. Alternative splicing ofpre-mRNAs is one such mechanism. It is estimated that in vertebrates splicing ofpre mRNAs generates a large proportion (30-60%) of mRNAs. Factors that regulate cell type specific alternative splicing of pre-mRNAs are likely to play a critical role in generation of neuronal diversity. Dr. Sharma’s laboratory proposes to investigate the role of splicing factors in generation of motor neuron diversity in the spinal cord and test whether these factors regulate alternative splicing of pre-mRNAs that encode preteins required for motor neuron development.

At this time stem cells are thought to be the most promising therapy for neurodegenerative diseases. In two devastating disease conditions, ALS and SMA, motor neurons in the spinal cord degenerate. Can these cells be replaced? Dr. Sharma’s research is focused on understanding how motor neurons are generated. They wish to learn from the embryos how to make motor neurons from simple precursors. Their findings would find direct use in targeting stem cells to a motor neuron fate.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…