Active dendritic processing of sensory inputs in vivo

2019 Seed Grant
Ikuko Smith, Ph.D.
University of California, Santa Barbara

During sensory perception, neural circuitry processes information by filtering, amplifying, and integrating electrical signals. The proposed project focuses on uncovering the underpinnings of such processes using electrophysiology, brain imaging, and behavioral analyses. The key aim of the project is to understand the role of neuronal dendrites in processing information. Much like axons, dendrites are capable of firing electrical spikes. Such capacity for spiking allows dendrites to serve as mini-computational units akin to transistors rather than passive cables. This concept vastly increases the computational power of a single neuron. If one imagines a network of neuronal connectivity as infrastructure like roads in the city, computational units on the dendrites would be the traffic lights that flexibly control the flow of the informational traffic. Whether such an active mechanism is engaged and plays a functional role in a behaving animal remains unclear. By directly recording electrical activities from fine distal dendrites during visual behavior, we seek to understand how dendrites contribute to synaptic computations and how modifying their excitability affects sensory integration. There are numerous developmental cognitive deficits such as autism that co-manifest with dysfunction in higher sensory perception. Findings from the project will both further our understanding of the fundamental way in which our brain processes information and help us study sensory integration as a foothold to decipher a general way in which a neural circuit is affected in these disorders.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…