Interrogating Experience-Induced Gene Regulatory Network Dynamics in Interneurons

2018 Scientific Innovations Award
Xinyu Zhao, Ph.D.
University of Wisconsin, Madison

Understanding the complex relationships between gene expression, neuronal plasticity, and behavior is a fundamental goal of neuroscience. However the brain contains many types of neurons. Therefore, a systematic understanding of brain function must include an effective strategy for targeting specific populations of neurons. In addition, cellular function requires coordinated action of large numbers of interacting genes. Therefore, a systematic approach must examine the gene regulatory networks that drive these expression changes. This application represents Dr. Zhao’s first steps to tackle these challenges by both utilizing state-of-art genomic tools and innovative computational methods to identify cell type-specific gene regulatory networks that mediate experience-induced behavioral changes. Dr. Zhao’s lab will focus on a type of neuron called interneurons. Although interneurons constitute only less than 20% of total neurons in the brain, they are critical in controlling the activities of many other neurons. It has been shown that these interneurons have critical roles in sensory processing, attention, working memory, and cognition, and they are altered in several psychiatric disorders, including schizophrenia, bipolar disorders, and autism. In this project, they will determine whether experience mobilizes networks of genes in specific subtypes of interneurons in the adult brains.

Other Awards

James J DiCarlo, M.D., Ph.D., Massachusetts Institute of Technology
Using Computer Models of the Neural Mechanisms of Visual Processing to Non-Invasively Modulate Brain States
DiCarlo’s research team is exploring an innovative approach to address emotional challenges, such as anxiety and depression. Traditional treatments for these disorders can be complex and often cause unpleasant side effects,…
Eiman Azim, Ph.D., The Salk Institute for Biological Studies
Learning from Error: Defining how Cerebellar Circuits Drive Adaptation in a Changing World
The ability to move effectively through the world is one of the most important functions of the brain. However, the world and the body are constantly changing, meaning the signals…
Hillel Adesnik, Ph.D., University of California, Berkeley
All Optically Probing the Neural Codes of Perception in the Primate Brain
How patterns of action potentials in space and time give rise to sensory experience is among the most enduring mysteries of biology. Despite decades of experiments correlating brain activity patterns…
Chaolin Zhang, Ph.D., Columbia University
Human-specific Alternative Splicing, Brain
Development, and Ciliopathies
Like movie frames needing to be edited to tell an engaging story, pieces of genetic information stored in DNA for each gene need to be sliced and rejoined, through a…