Interrogating Experience-Induced Gene Regulatory Network Dynamics in Interneurons

2018 Scientific Innovations Award
Xinyu Zhao, Ph.D.
University of Wisconsin, Madison

Understanding the complex relationships between gene expression, neuronal plasticity, and behavior is a fundamental goal of neuroscience. However the brain contains many types of neurons. Therefore, a systematic understanding of brain function must include an effective strategy for targeting specific populations of neurons. In addition, cellular function requires coordinated action of large numbers of interacting genes. Therefore, a systematic approach must examine the gene regulatory networks that drive these expression changes. This application represents our first steps to tackle these challenges by both utilizing state-of-art genomic tools and innovative computational methods to identify cell type-specific gene regulatory networks that mediate experience-induced behavioral changes. We will focus on a type of neuron called interneurons. Although interneurons constitute only less than 20% of total neurons in the brain, they are critical in controlling the activities of many other neurons. It has been shown that these interneurons have critical roles in sensory processing, attention, working memory, and cognition, and they are altered in several psychiatric disorders, including schizophrenia, bipolar disorders, and autism. In this project, we will determine whether experience mobilizes networks of genes in specific subtypes of interneurons in the adult brains.

Other Awards

Angelique Bordey, Ph.D., Yale University
The Role of Ribosomes in Synaptic Circuit Formation and Socio-Communicative Deficits
Our proposal aims at identifying a molecular mechanism responsible for autism-like socio-communicative defects in the developmental disorder, tuberous sclerosis complex (TSC). TSC is a genetic disorder with a 30-60% incidence…
Adam E. Cohen, Ph.D., The University of North Carolina at Chapel Hill
To spike or not to spike? Mapping dendritic computations in vivo.
The brain is made of neurons, and neurons convert synaptic inputs to spiking outputs. How does a neuron decide when to spike?
Gina Turrigiano, Ph.D., Brandeis University
Homeostatic Maintenance of Neocortical Excitation-inhibition Balance by Ciliary Neuropeptidergic Signaling
Brain circuit wiring is adjusted during adolescence to generate fully functional circuits, and this process depends on an interaction between genetics and experience. During this period of experience-dependent development, excitatory…
Gregory Scherrer, Ph.D., The University of North Carolina at Chapel Hill
Mechanisms of Affective States and Drug Discovery at the Intersection of Chronic Pain and Opioid Addiction
Pain is normally a sensation that we experience when our body is exposed to damaging stimuli, such as the noxious heat of an open flame. However, when chronic, pain becomes…