Synthetic nanoparticles for gene editing in the brain in utero

Synthetic nanoparticles for gene editing in the brain in utero
2014 Scientific Innovations Award
W. Mark Saltzman, Ph.D.
Department of Biomedical Engineering
Yale University

Dr. Saltzman and his lab propose an innovative and potentially transformative approach for the correction of single-gene disorders of the central nervous system in the fetal brain: in utero administration of synthetic nanoparticles carrying triplex-forming oligonucleotides, which they have shown to be a powerful gene-editing agent. They will optimize nanoparticle size, chemistry, and composition for targeted delivery to fetal brain cells after intra-uterine administration. Dr. Saltzman and his lab will test the effectiveness of this approach by attempting to correct the gene disorder in Hurler Syndrome in mice. If they are successful, this novel approach can be applied to any monogenic gene defect in the brain. Further, our nanoparticles—which will be produced from biocompatible materials–can potentially be used for the in utero delivery of any agent and therefore may be useful for treating a wide range of diseases in the brain.

Other Awards

James J DiCarlo, M.D., Ph.D., Massachusetts Institute of Technology
Using Computer Models of the Neural Mechanisms of Visual Processing to Non-Invasively Modulate Brain States
DiCarlo’s research team is exploring an innovative approach to address emotional challenges, such as anxiety and depression. Traditional treatments for these disorders can be complex and often cause unpleasant side effects,…
Eiman Azim, Ph.D., The Salk Institute for Biological Studies
Learning from Error: Defining how Cerebellar Circuits Drive Adaptation in a Changing World
The ability to move effectively through the world is one of the most important functions of the brain. However, the world and the body are constantly changing, meaning the signals…
Hillel Adesnik, Ph.D., University of California, Berkeley
All Optically Probing the Neural Codes of Perception in the Primate Brain
How patterns of action potentials in space and time give rise to sensory experience is among the most enduring mysteries of biology. Despite decades of experiments correlating brain activity patterns…
Chaolin Zhang, Ph.D., Columbia University
Human-specific Alternative Splicing, Brain
Development, and Ciliopathies
Like movie frames needing to be edited to tell an engaging story, pieces of genetic information stored in DNA for each gene need to be sliced and rejoined, through a…