To spike or not to spike? Mapping dendritic computations in vivo.

2022 Scientific Innovations Award
Adam E. Cohen, Ph.D.
Harvard University

The brain is made of neurons, and neurons convert synaptic inputs to spiking outputs. How does a neuron decide when to spike? Neuronal dendrites often have highly nonlinear responses, which lead to complex relationships between synaptic inputs and the membrane voltage at the neuronal cell body, which ultimately determines whether a neuron spikes. Little is known about how these nonlinearities manifest in live animals, or even what conceptual framework to use to describe information processing in neuronal dendrites. This BRF project aims to combine advanced voltage imaging tools with optogenetic stimulation to map the membrane voltage and calcium dynamics throughout the dendritic trees of cortical pyramidal neurons in the brains of awake mice. By combining precisely timed sensory and optogenetic stimuli, Dr. Cohen and his lab will determine how excitation, inhibition, neuromodulation, and action potentials interact in the dendritic tree. This information will help them understand dendritic computation, will inform models of activity-dependent plasticity, and may serve as a baseline for studies of dendritic dysregulation in nervous system diseases that affect memory, such as Alzheimer’s Disease and Autism Spectrum Disorders.

Other Awards

Robert Froemke Ph.D., NYU School of Medicine
The Neuroscience of Families: Social Behavior in Naturalistic Controlled Environments
Animals can work together in groups to achieve specific aims with higher success rates than if acting alone. For communally-living and consociating species such as humans and rodents, group dynamics…
Ken Prehoda, Ph.D., University of Oregon
Brain Regeneration Dynamics Using the Transparent Fish Danionella Cerebrum
Regenerative medicine may one day enable us to repair brain damage caused by injury and disease. While humans and other mammals cannot regenerate the central nervous system, fish have an…
Doris Tsao, Ph.D., University of California, Berkeley
Understanding how psychedelics affect top-down belief propagation in the primate brain
Our research will try to understand how special substances called psychedelics can help the brain see the world differently. When people are sad or worried, their brains sometimes get “stuck”…
James J DiCarlo, M.D., Ph.D., Massachusetts Institute of Technology
Using Computer Models of the Neural Mechanisms of Visual Processing to Non-Invasively Modulate Brain States
DiCarlo’s research team is exploring an innovative approach to address emotional challenges, such as anxiety and depression. Traditional treatments for these disorders can be complex and often cause unpleasant side effects,…