Autism, schizophrenia

Activity-induced adaptations in the molecular machines that control neurotransmitter release
2013 Seed Grant

Pascal Kaeser, M.D.
Department of Neurobiology
Harvard University

The brain is the most complex organ of the body. Cells within the brain, called neurons, communicate with each other to influence vision, movement, memories, emotion—just about every activity that governs how we live our lives. So it’s vitally important to understand how these 100 billion cells form, grow, connect and communicate.

In the human brain, synapses are the contact points where neurons communicate. Faulty communication between neurons at synapses is a hallmark of many brain disorders, including autism, mental retardation, and schizophrenia. Although we understand the important role of the signal transmission at synapses, we need a clearer picture of the mechanisms behind it. Understanding what is happening in a healthy brain will enable us to understand what is happening in brains that don’t function normally.

Dr. Pascal Kaeser, Assistant Professor of Neurology at Harvard University, is using his 2013 BRF Seed Grant to decipher what is regulating the signal transmission at synapses. He is focusing on molecules that have been shown to be involved in this regulation of synapses but their exact role is not understood. This knowledge will be critical to advance our understanding of the pathological mechanisms in brain disorders and may uncover novel therapeutic targets for a variety of neurological diseases. The BRF is pleased to be able to support Dr. Kaeser’s critical research, as well as the leading-edge research of all our Seed Grant winners.

Other Grants

Rebekah C. Evans, Ph.D., Georgetown University
In Vivo and Ex Vivo Dissection of Midbrain Neuron Activity During Exercise
Exercise is important for the health of the body and the mind. Exercise promotes learning and reduces symptoms of brain-related diseases such as Parkinson’s disease and Alzheimer’s disease. However, it…
William J. Giardino, Ph.D. Stanford University
Deciphering the Neuropeptide Circuitry of Emotional Arousal in Narcolepsy
This research project aims to investigate the neural mechanisms of a specific type of brain cell called neuropeptide neurons within a region of the brain’s amygdala network called the bed…
Howard Gritton, Ph.D., University of Illinois
Attention Mechanisms Contributing to Auditory Spatial Processing.
Our world is composed of a rich mixture of sounds. We often process sounds including speech in the presence of many other competing auditory stimuli (e.g., voices in a crowded…
Nora Kory, Ph.D., Harvard University
Elucidating the Fates and Functions of Lactate in the Brain
The human brain requires significant energy to function. Despite accounting for only 2% of our body weight, the brain consumes a substantial 20% of the body’s energy, relying on a…