Autism, schizophrenia

Activity-induced adaptations in the molecular machines that control neurotransmitter release
2013 Seed Grant

Pascal Kaeser, M.D.
Department of Neurobiology
Harvard University

The brain is the most complex organ of the body. Cells within the brain, called neurons, communicate with each other to influence vision, movement, memories, emotion—just about every activity that governs how we live our lives. So it’s vitally important to understand how these 100 billion cells form, grow, connect and communicate.

In the human brain, synapses are the contact points where neurons communicate. Faulty communication between neurons at synapses is a hallmark of many brain disorders, including autism, mental retardation, and schizophrenia. Although we understand the important role of the signal transmission at synapses, we need a clearer picture of the mechanisms behind it. Understanding what is happening in a healthy brain will enable us to understand what is happening in brains that don’t function normally.

Dr. Pascal Kaeser, Assistant Professor of Neurology at Harvard University, is using his 2013 BRF Seed Grant to decipher what is regulating the signal transmission at synapses. He is focusing on molecules that have been shown to be involved in this regulation of synapses but their exact role is not understood. This knowledge will be critical to advance our understanding of the pathological mechanisms in brain disorders and may uncover novel therapeutic targets for a variety of neurological diseases. The BRF is pleased to be able to support Dr. Kaeser’s critical research, as well as the leading-edge research of all our Seed Grant winners.

Other Grants

Sarah C. Goetz, Ph.D., Duke University
Uncovering a Novel Role for Primary Cilia in Eph/Ephrin Signaling in Neurons
2022 Seed GrantSarah C. Goetz, Ph.D. Duke University Women’s Council Seed Grant Primary cilia are tiny projections from cells that function like an antenna- they receive and may also send…
Erin M. Gibson, Ph.D., Stanford University
Circadian Regulation of Oligodendroglial Senescence and Metabolomics in Aging
2022 Seed GrantErin M. Gibson, Ph.D.Stanford University The brain consists of two main classes of cells, neurons and glia. Glia make-up more than half of the cells in the brain…
Yvette Fisher, Ph.D., University of California, Berkeley
Dynamic Modulation of Synaptic Plasticity During Spatial Exploration
2022 Seed GrantYvette Fisher, Ph.D.University of California, Berkeley The Virginia (Ginny) & Roger Carlson Seed Grant Cognitive flexibility is critical for appropriately adjusting thoughts and behaviors to meet changing demands…
Byoung Il Bae, Ph.D., University of Connecticut
Unique Vulnerability of Developing Human Cerebral Cortex to Loss of Centrosomal Protein
2022 Seed GrantByoung Il Bae, Ph.D.University of Connecticut Carl & Marilynn Thoma Foundation Seed Grant The cerebral cortex is the largest and outermost part of the human brain. It is…