Charting New Territory: The Cerebello-amygdala Circuit and its Role in Emotion Regulation

2017 Seed Grant
Diasynou Fioravante, Ph.D.
University of California, Davis

A fundamental advancement in the way we understand and seek to treat conditions such as anxiety, depression, PTSD and autism comes from the realization that these are not single-site disorders; rather, they are disorders that stem from dysfunction in how neurons in different brain regions communicate with each other and form neural circuits that regulate cognition and emotion. These neural circuits are significantly more extensive than we previously appreciated and include unexpected structures such as the cerebellum, which is traditionally thought of solely as a motor control center.  The cerebellum is widely connected with non-motor brain regions and has been strongly implicated in non-motor aspects of affective and neurodevelopmental disorders. However, our knowledge of how the cerebellum and its long-range connections are used to coordinate non-motor functions with the rest of the brain is rudimentary, limiting our ability to intervene therapeutically. The overarching objective of this proposal is to delineate the role of the cerebellum in emotion. We hypothesize that the cerebellum regulates emotional learning and memory through connections with the amygdala, a structure important for the processing of emotion. We propose to test this hypothesis at the level of individual neural connections (synapses), neural circuits and behavior through a multifaceted approach, which leverages the advantages of cutting-edge technologies to dissociate motor from non-motor effects.  These studies will transform our understanding of cerebellar function and fundamentally advance our knowledge about the neurobiology of emotion, paving the way for the rational design of targeted translational approaches for the amelioration of multiple relevant neurodevelopmental and affective disorders.

Other Grants

Andre Berndt, Ph.D.
Monitoring Communication in Neuronal Networks in Real Time and at Single Cell Resolution
Visualizing the flow of information through the complex and intertwined networks of the brain is a long‐sought goal of neuroscience. Genetically encoded proteins such as the fluorescent calcium sensor GCaMP…
Denise Cai, Ph.D.
Investigating the Role of Negative Valence in the Temporal Dynamics of Memory-Linking
Determining how distinct memories are formed, linked, and retrieved, and the role of fear in these processes, is an essential part of understanding PTSD, a debilitating disorder characterized by the…
Dr. Weizhe Hong, Ph.D.
Dissecting the Organization and Function of Social Behavioral Circuits in the Amygdala
Social interactions play a crucial role in the reproduction, survival, and physical and mental health of many vertebrate species including humans. Impairment in social behavior is a hallmark of several…
Takashi Kitamura, Ph.D.
Neural Circuit Mechanisms of Behavior-Dependent Representation for Space and Time
The central question in my proposal is whether our perception of time and space share the same circuit mechanisms during our daily life. Recent studies suggest that neurons in the…