Charting New Territory: The Cerebello-amygdala Circuit and its Role in Emotion Regulation

2017 Seed Grant
Diasynou Fioravante, Ph.D.
University of California, Davis

A fundamental advancement in the way we understand and seek to treat conditions such as anxiety, depression, PTSD and autism comes from the realization that these are not single-site disorders; rather, they are disorders that stem from dysfunction in how neurons in different brain regions communicate with each other and form neural circuits that regulate cognition and emotion. These neural circuits are significantly more extensive than we previously appreciated and include unexpected structures such as the cerebellum, which is traditionally thought of solely as a motor control center.  The cerebellum is widely connected with non-motor brain regions and has been strongly implicated in non-motor aspects of affective and neurodevelopmental disorders. However, our knowledge of how the cerebellum and its long-range connections are used to coordinate non-motor functions with the rest of the brain is rudimentary, limiting our ability to intervene therapeutically. The overarching objective of this proposal is to delineate the role of the cerebellum in emotion. We hypothesize that the cerebellum regulates emotional learning and memory through connections with the amygdala, a structure important for the processing of emotion. We propose to test this hypothesis at the level of individual neural connections (synapses), neural circuits and behavior through a multifaceted approach, which leverages the advantages of cutting-edge technologies to dissociate motor from non-motor effects.  These studies will transform our understanding of cerebellar function and fundamentally advance our knowledge about the neurobiology of emotion, paving the way for the rational design of targeted translational approaches for the amelioration of multiple relevant neurodevelopmental and affective disorders.

Other Grants

Lindsay M. De Biase, Ph.D., University of California Los Angeles
The Role of Microglial Lysosomes in Selective Neuronal Vulnerability
Synapses, the sites of signaling between neurons in the brain, play essential roles in learning, memory, and the health of neurons themselves. An enduring mystery is why some neurons are…
How the Nervous System Constructs Internal Models of the External World
As animals navigate their environments, they construct internal models of the external sensory world and use these models to guide their behavior. This ability to incorporate ongoing sensory stimuli into…
Xiaojing Gao, Ph.D., Stanford University
When Neural Circuits Meet Molecular Circuits: Quantitative Genetic Manipulation with Single-cell Consistency
Cells are the building blocks of our bodies. We get sick when the cells “misbehave”. The way modern gene therapies work is to introduce genes, fragments of DNA molecules that…
Rafiq Huda, Ph.D., Rutgers University
Conducting the Orchestra of Movement—Functional Role of Striatal Astrocytes in Health and Disease
Movement requires coordinated activity across a large brain-wide network. The striatum is a particularly important part of this circuit; it integrates motor-related information from many distinct brain regions to regulate…