Conducting the Orchestra of Movement—Functional Role of Striatal Astrocytes in Health and Disease

2021 Seed Grant
Rafiq Huda, Ph.D.
Rutgers University

Movement requires coordinated activity across a large brain-wide network. The striatum is a particularly important part of this circuit; it integrates motor-related information from many distinct brain regions to regulate the activity of downstream motor structures. In agreement, dysfunction of the striatum is a key contributor to the motor symptoms of Parkinson’s disease (PD), a neurodegenerative disorder characterized by the loss of dopamine producing neurons. Astrocytes are an integral component of brain circuits that modulate neuronal processing and behavioral output via multiple mechanisms. Although deficits in striatal neurons in animal models of PD are well-characterized, how loss of dopamine affects the function of astrocytes in vivo remains unknown. As a result, striatal astrocyte signaling has been overlooked as a potential therapeutic target for the motor symptoms of PD. We have pioneered the technologies necessary to address this major knowledge gap in our biological understanding of PD. In this project, Dr. Huda’s Laboratory will use cutting-edge in vivo microscopy, genetics, behavioral, and computational approaches to test the hypothesis that astrocytes orchestrate the network activity of striatal neurons to facilitate movement and that dysregulation of this process contributes to the motor symptoms of PD. Together, Dr. Hida’s work will establish novel roles for astrocytes in the neuromodulation of striatal circuits, paving the way for next-generation astrocyte-targeted therapies for PD and other striatum-dependent movement disorders.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…