Develop the sonogenetic method to manipulate the activity of mammalian neurons in vivo

2016 Seed Grant
Sreekanth H. Chalasani, Ph.D.
The Salk Institute for Biological Studies

To understand how the brain functions, researchers must be able to functionally manipulate specific types of neurons to determine which behaviors they control. Light-based methods (optogenetics) for stimulating neurons have revolutionized this field, but these methods suffer one major drawback – light does not penetrate the skin, and when delivered internally (i.e., invasively) is rapidly scattered by tissue and bone. In contrast, ultrasound can be delivered non-invasively through the skin and focused to very small regions within the body (1 mm2). Thus, ultrasound represents an ideal way of activating neurons. We have recently identified a protein that responds to a single pulse of ultrasound stimuli at 2 MHz, and hypothesized that target neurons forced to express this protein could be controlled via ultrasound. We call our system “sonogenetics”, and have validated this technique using the C. elegans nervous system. We have shown that C. elegans neurons expressing an ultrasound-sensitive protein can be manipulated noninvasively. We now propose to further develop this method and to extend this technique to the mammalian brain. We will first determine which mechano-sensitive proteins respond to ultrasound stimuli, and generate protein variants with enhanced functionality (Aim 1). In collaboration with bioengineers, we will develop a form-fitting cap that can hold an ultrasound transducer on the head of a mouse and deliver an ultrasound wave of appropriate intensity to a specific brain region. We will use viral vectors to deliver ultrasound-sensitive proteins to specific targets deep within the brain, and test whether ultrasound stimuli can subsequently be used to manipulate them (Aim 2). The noninvasive nature of our sonogenetic approach will facilitate the translation of this method into therapeutic applications for treating a range of human conditions.

Other Grants

Rebekah C. Evans, Ph.D., Georgetown University
In Vivo and Ex Vivo Dissection of Midbrain Neuron Activity During Exercise
Exercise is important for the health of the body and the mind. Exercise promotes learning and reduces symptoms of brain-related diseases such as Parkinson’s disease and Alzheimer’s disease. However, it…
William J. Giardino, Ph.D. Stanford University
Deciphering the Neuropeptide Circuitry of Emotional Arousal in Narcolepsy
This research project aims to investigate the neural mechanisms of a specific type of brain cell called neuropeptide neurons within a region of the brain’s amygdala network called the bed…
Howard Gritton, Ph.D., University of Illinois
Attention Mechanisms Contributing to Auditory Spatial Processing.
Our world is composed of a rich mixture of sounds. We often process sounds including speech in the presence of many other competing auditory stimuli (e.g., voices in a crowded…
Nora Kory, Ph.D., Harvard University
Elucidating the Fates and Functions of Lactate in the Brain
The human brain requires significant energy to function. Despite accounting for only 2% of our body weight, the brain consumes a substantial 20% of the body’s energy, relying on a…