Dissecting the Organization and Function of Social Behavioral Circuits in the Amygdala

Dodge H. Teague, Jr. Grant Recipient
Dr. Weizhe Hong, Ph.D.
The Regents of the University of California, Los Angeles

The Dodge H. Teague, Jr. Seed Grant

Social interactions play a crucial role in the reproduction, survival, and physical and mental health of many vertebrate species including humans. Impairment in social behavior is a hallmark of several neuropsychiatric disorders, such as autism spectrum disorders, depression, and schizophrenia. The amygdala is involved in regulating emotional processing and social behavior from rodents to humans. Dysfunction of the amygdala has been implicated in several neuropsychiatric disorders associated with social deficits. How the amygdala controls distinct social behavioral decisions is still not well understood. Deciphering this question could guide circuit-level investigation of disease mechanisms and development of interventions of mental disorders. We propose to integrate state-of-the-art techniques to comprehensively define neuronal cell types in the amygdala and to examine whether and how the activity of select, neuronal cell types controls distinct social behavioral decisions.

Other Grants

Rebekah C. Evans, Ph.D., Georgetown University
In Vivo and Ex Vivo Dissection of Midbrain Neuron Activity During Exercise
Exercise is important for the health of the body and the mind. Exercise promotes learning and reduces symptoms of brain-related diseases such as Parkinson’s disease and Alzheimer’s disease. However, it…
William J. Giardino, Ph.D. Stanford University
Deciphering the Neuropeptide Circuitry of Emotional Arousal in Narcolepsy
This research project aims to investigate the neural mechanisms of a specific type of brain cell called neuropeptide neurons within a region of the brain’s amygdala network called the bed…
Howard Gritton, Ph.D., University of Illinois
Attention Mechanisms Contributing to Auditory Spatial Processing.
Our world is composed of a rich mixture of sounds. We often process sounds including speech in the presence of many other competing auditory stimuli (e.g., voices in a crowded…
Nora Kory, Ph.D., Harvard University
Elucidating the Fates and Functions of Lactate in the Brain
The human brain requires significant energy to function. Despite accounting for only 2% of our body weight, the brain consumes a substantial 20% of the body’s energy, relying on a…