High-density neural recording of dysfunctional memories in animal models of mental disease

2014 Seed Grant
David J. Foster, Ph.D.
Department of Neuroscience
Johns Hopkins University

Understanding the neural basis of mental diseases such as schizophrenia and autism is a major challenge in neuroscience. One major roadblock is the lack of basic understanding of how neural circuits contribute to the cognitive processes that are impaired in these diseases. A recent focus in patient populations has been on the “default mode network” of brain areas such as prefrontal cortex and hippocampus that are particularly active during quite rest and free thinking. Such areas exhibit marked impairments in patients. Interestingly, activity in the default network is associated with high-level cognitive functions such as episodic memory, imagination, and consideration of the perspectives of others, thus providing a framework for understanding the neural basis of diseases such as schizophrenia and autism. We will investigate a fascinating correlate of this activity in mice, in which the hippocampus represents sequences of locations corresponding to memories of previously experienced behavioral trajectories through space, but on a 20-fold faster timescale. We will explore how this activity is disrupted in models of cognitive disease, and probe possible molecular mechanisms for this disruption. We will further use powerful genetic techniques to gain experimental control over these activity patterns in the brain. These studies will yield fundamental insights into mechanisms of high-level cognition, with the potential for developing and testing therapeutic interventions for cognitive disease.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…