Identifying Genetic Influences on Chromatin Accessibility During Human Cortical Development

2017 Seed Grant
Jason Stein, Ph.D.
University of North Carolina at Chapel Hill

Developmental neuropsychiatric diseases such as schizophrenia and autism have debilitating consequences to individuals and skyrocketing costs of care, creating a great burden to patients, their families, and society. Though the causes of these diseases are not well understood, specific letters and locations in the genome that increase risk for illness have recently been identified. These genetic changes found more often in people with neuropsychiatric diseases are guideposts pointing us for the first time towards an understanding of the neurobiological genesis of these complex behavioral diseases. However, this process is difficult because these locations are often in regions of the genome where the encoded function is not well understood. Our goal in this proposal is to create a functional map and mechanism between poorly understood genetic variation and much better understood genes. I will identify genetic variants associated with changes in chromatin accessibility, an indicator of functionality in non-coding genomic regions, during human cortical development. I will integrate these associations with previously acquired data to determine how genetic variation influences chromatin accessibility, binding of gene regulatory elements, expression, and risk for illness. Mechanistic insight derived from this project may allow design of rational therapeutics for developmental neuropsychiatric disorders that have seen a dearth of treatment for the past 60 years.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…