Identifying input-specific mechanisms underlying drug-evoked plasticity in the dopamine system

2015 Seed Grant
Stephan Lammel, Ph.D.
University of California, Berkeley

Drug addiction is a major public issue worldwide because it strongly affects a person’s health and places a costly burden upon society. A consistent finding in addiction research is that drugs of abuse elicit long-lasting synaptic changes in the brain’s “reward system”, a neural circuit important for 5 responding to natural rewards such as food and sex. Such pathologic synaptic plasticity represents a form of maladaptive learning that is thought to contribute to the development of the addicted state. A critical step in addiction research is to identify specific synapses in the reward system that are susceptible to drug-evoked synaptic plasticity. To identify these synapses we will combine cutting-edge technologies that allow unprecedented insights into brain structure and function. Our findings will accelerate the development of brain stimulation interventions that selectively target drug-induced changes in the synapses of the brain’s reward system, which may be efficacious in reducing drug use and relapse.

Other Grants

Lindsay M. De Biase, Ph.D., University of California Los Angeles
The role of microglial lysosomes in selective neuronal vulnerability
Synapses, the sites of signaling between neurons in the brain, play essential roles in learning, memory, and the health of neurons themselves. An enduring mystery is why some neurons are…
How the nervous system constructs internal models of the external world
As animals navigate their environments, they construct internal models of the external sensory world and use these models to guide their behavior. This ability to incorporate ongoing sensory stimuli into…
Xiaojing Gao, Ph.D., Stanford University
When Neural Circuits Meet Molecular Circuits: Quantitative Genetic Manipulation with Single-cell Consistency
Cells are the building blocks of our bodies. We get sick when the cells “misbehave”. The way modern gene therapies work is to introduce genes, fragments of DNA molecules that…
Rafiq Huda, Ph.D., Rutgers University
Conducting the orchestra of movement—functional role of striatal astrocytes in health and disease
Movement requires coordinated activity across a large brain-wide network. The striatum is a particularly important part of this circuit; it integrates motor-related information from many distinct brain regions to regulate…