In vivo optogenetics to distinguish learning from performance effects of dopamine on fine motor skills

2014 Seed Grant
Daniel Leventhal, Ph.D.
Department of Neurology
University of Michigan

Parkinson Disease (PD) is a common, disabling condition characterized by progressive slowness of movement and loss of the brain chemical dopamine. Though it has been known for more than 40 years that replacing dopamine improves motor function, we still do not understand why. Ideas regarding the role of dopamine in motor control can be broadly divided into “performance” and “learning” categories. That is, the presence or absence of dopamine may influence movement at that moment (“performance”) or in the future (“learning”). It has been hard to tease these possibilities apart because techniques to alter dopamine signaling in the brain (for example, drugs) act on long timescales. We will overcome this using optogenetic techniques, where individual nerve cells (in this case, dopamine cells) can be turned on or off with millisecond precision by light pulses. By turning dopamine neurons off at key moments as rats perform skilled reaching movements, we will determine how the timing of dopamine signaling influences the performance and acquisition of fine motor skills. By better understanding how dopamine influences motor learning and performance, therapies can be more rationally designed to improve efficacy and reduce side-effects of treatment for PD.

Other Grants

Rebekah C. Evans, Ph.D., Georgetown University
In Vivo and Ex Vivo Dissection of Midbrain Neuron Activity During Exercise
Exercise is important for the health of the body and the mind. Exercise promotes learning and reduces symptoms of brain-related diseases such as Parkinson’s disease and Alzheimer’s disease. However, it…
William J. Giardino, Ph.D. Stanford University
Deciphering the Neuropeptide Circuitry of Emotional Arousal in Narcolepsy
This research project aims to investigate the neural mechanisms of a specific type of brain cell called neuropeptide neurons within a region of the brain’s amygdala network called the bed…
Howard Gritton, Ph.D., University of Illinois
Attention Mechanisms Contributing to Auditory Spatial Processing.
Our world is composed of a rich mixture of sounds. We often process sounds including speech in the presence of many other competing auditory stimuli (e.g., voices in a crowded…
Nora Kory, Ph.D., Harvard University
Elucidating the Fates and Functions of Lactate in the Brain
The human brain requires significant energy to function. Despite accounting for only 2% of our body weight, the brain consumes a substantial 20% of the body’s energy, relying on a…