Ion Channel Trafficking at the Axon Initial Segment and Neural Excitability

2015 Seed Grant
Michael Hoppa, Ph.D.
Dartmouth College

Over 65 million people worldwide have epilepsy and suffer from debilitating seizures. Seizures result from clusters of neurons in a circuit to fire synchronously as the result of a lowered excitability threshold. Although the susceptibility for becoming epileptic increases with age, we have little understanding about why this threshold for electrical activity weakens to a pathological state. The axon initial segment is a master integrator switch in the neuron that initiates firing and harbors many unique proteins associated with epilepsy making it a prime area for research. We have devised several quantitative optogenetic approaches to specifically measure initial segment function in the context of neuronal plasticity and epileptogenesis. Under this experimental regime we will gain an understanding of a critical piece of novel cellular physiology that could uncover new targets for therapeutic approaches to combat and prevent epilepsy.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…