Mechanisms underlying the brain disorder in Down syndrome

2015 Seed Grant
Bing Ye, Ph.D.
University of Michigan

While Down Syndrome (DS) is the most common genetic form of intellectual disability caused by a birth defect, there is currently no effective treatment for it. Development of the cerebral cortex is defective in DS patients. Understanding the cause behind these cortical defects in DS will lead researchers to comprehend the root mechanisms of the disease. The ultimate goal of the proposed research is to design therapeutic strategies for treating the brain disorder in DS patients. Using the powerful genetic tools available in the fruit fly Drosophila, the Ye lab recently found the importance of proper levels of the Down Syndrome Cell Adhesion Molecule (DSCAM), which is increased in the brains of DS patients. Their studies suggest that when there is too much of DSCAM during brain development, neurons do not form properly. Furthermore, they have identified a key molecule that mediates this effect of DSCAM, which inspires the design of potential therapeutic strategies for treating this disorder.

Extending the molecular models that the Ye lab obtained from studies in Drosophila, the team, as a next logical step, is investigating the consequences of abnormally high levels of DSCAM in the brain development of mouse models. They propose to investigate how high DSCAM levels lead to defective cortical development with the intention of providing potential targets for treating the intellectual disability in DS. The Seed Grant from the Brain Research Foundation will provide the support that they need to advance their research from the fruit fly model to the mouse disease models.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…