Monitoring Communication in Neuronal Networks in Real Time and at Single Cell Resolution

2018 Seed Grant
Andre Berndt, Ph.D.
University of Washington

Visualizing the flow of information through the complex and intertwined networks of the brain is a long‐sought goal of neuroscience. Genetically encoded proteins such as the fluorescent calcium sensor GCaMP provide tremendous advantages for analyzing neuronal activity. Protein expression can be restricted to specific neuronal subtypes enabling us to probe their function in isolation from surrounding cells in real time and with single cell resolution. Consequently, we could dissect brain function in even more detail by visualizing crucial signals such as action potentials or neurotransmitter release. However, the number of sensors that provide applicable readout capabilities is limited, and new designs depend on slow and iterative engineering cycles. We have built one of the fastest platforms for functional screening of voltage and ligand‐activated sensors. We hypothesize that the significant increase in testing throughput will allow us to generate a new generation of applicable tools at unprecedented speeds. We propose to rapidly develop novel fluorescent protein sensors for quantifying the excitatory and inhibitory activity of neuronal networks. We will utilize these new sensors in much faster timeframes and directly monitor the impaired excitatory and inhibitory activity in mouse models with severe autistic and epileptic phenotypes. Monitoring impaired network dynamics in real time and at large scale will close critical knowledge gaps in our understanding of the physiology underlying neuronal dysfunction. These insights will be crucial for developing therapies and interventions which could significantly improve the outcome of patients and their caregivers.

Other Grants

Lindsay M. De Biase, Ph.D., University of California Los Angeles
The Role of Microglial Lysosomes in Selective Neuronal Vulnerability
Synapses, the sites of signaling between neurons in the brain, play essential roles in learning, memory, and the health of neurons themselves. An enduring mystery is why some neurons are…
How the Nervous System Constructs Internal Models of the External World
As animals navigate their environments, they construct internal models of the external sensory world and use these models to guide their behavior. This ability to incorporate ongoing sensory stimuli into…
Xiaojing Gao, Ph.D., Stanford University
When Neural Circuits Meet Molecular Circuits: Quantitative Genetic Manipulation with Single-cell Consistency
Cells are the building blocks of our bodies. We get sick when the cells “misbehave”. The way modern gene therapies work is to introduce genes, fragments of DNA molecules that…
Rafiq Huda, Ph.D., Rutgers University
Conducting the Orchestra of Movement—Functional Role of Striatal Astrocytes in Health and Disease
Movement requires coordinated activity across a large brain-wide network. The striatum is a particularly important part of this circuit; it integrates motor-related information from many distinct brain regions to regulate…