Nanoscale Optical Neuronal Recording using Nontoxic Quantum Probes

2015 Seed Grant
Lee Bassett, Ph.D.
University of Pennsylvania

We aim to develop a new class of multifunctional sensors that respond to chemical signals in the brain through quantum physics and that can be probed using light. The sensors are based on atom-scale defects in diamond nanoparticles, which are nontoxic, stable fluorophores harboring electron spins that respond to nanoscale magnetic fields. By attaching molecules to the nanoparticles’ surface that bind neurotransmitters, we aim to make the sensors chemically active, using the diamond spins to transduce dynamical changes in neurotransmitter concentrations into an optical signal. The resulting modular probes can be programmed to respond to specific neurotransmitters and targeted to specific cell types and locations (e.g., within synapses between neurons) to report the real-time activity of large-scale neuronal networks in living animals and, potentially, in humans.

Other Grants

Lindsay M. De Biase, Ph.D., University of California Los Angeles
The role of microglial lysosomes in selective neuronal vulnerability
Synapses, the sites of signaling between neurons in the brain, play essential roles in learning, memory, and the health of neurons themselves. An enduring mystery is why some neurons are…
How the nervous system constructs internal models of the external world
As animals navigate their environments, they construct internal models of the external sensory world and use these models to guide their behavior. This ability to incorporate ongoing sensory stimuli into…
Xiaojing Gao, Ph.D., Stanford University
When Neural Circuits Meet Molecular Circuits: Quantitative Genetic Manipulation with Single-cell Consistency
Cells are the building blocks of our bodies. We get sick when the cells “misbehave”. The way modern gene therapies work is to introduce genes, fragments of DNA molecules that…
Rafiq Huda, Ph.D., Rutgers University
Conducting the orchestra of movement—functional role of striatal astrocytes in health and disease
Movement requires coordinated activity across a large brain-wide network. The striatum is a particularly important part of this circuit; it integrates motor-related information from many distinct brain regions to regulate…