Schizophrenia by Axel Nimmerjahn

The Role of Astrocyte-Neuron Communication in Normal Brain Function and Mental Disorder
2013 Seed Grant

Axel Nimmerjahn, Ph.D.
Department of Biophotonics
The Salk Institute for Biological Studies

Mental disorders represent the single greatest burden of all human diseases, and currently available treatments do not meet the need of most patients. Mental illnesses are associated with changes in the brain’s structure, chemistry and function as revealed by brain imaging techniques such as magnetic resonance imaging (MRI), and positron emission tomography (PET) on the systems-level. However, a complete understanding of what causes mental illness on cellular and molecular levels is still lacking. Anatomical studies have revealed disease-associated changes in both neuronal and glial cell morphology. However, while electrophysiological studies have provided some insight into electrical activity changes in neurons during disease states and drug treatment, very little is known about corresponding changes in glial cells, particularly astrocytes the largest subgroup of glial cells in the brain, which are chemically excitable but electrically largely silent. Astrocytes can communicate chemically with neurons both in vitro and in vivo. However, it is unclear whether astrocyte neuron communication contributes to mental disorders.

Dr. Nimmerjahn’s central hypothesis is that astrocytes significantly contribute to mental illness through aberrant modulation of neural activity thereby presenting a promising new target for future therapeutic interventions. The rationale for his research is that, once the cellular mechanisms by which astrocytes contribute to brain physiology and pathology are known, new and improved treatment strategies can be developed. Focusing on the role of astrocyte-neuron communication in prefrontal cortex, a brain region involved in mental disorders, three specific aims will be pursued: 1) Determine normal forms of astrocyte-neuron communication in the prefrontal cortex of behaving mice; 2) Determine how astrocyte-neuron communication is dysregulated in mouse models of psychosis; and 3) Determine how anti-psychotic drug treatment modulates astrocyte-neuron communication in mentally ill mice. The proposed research will reveal key insights into the cellular mechanisms underlying astrocyte-neuron communication in the normal and diseased mouse brain. This knowledge should pave the way for the development of new and improved drug treatments and their evaluation in preclinical mouse models. If indeed astrocyte-neuron communication contributes to mental illness phenotypes this would profoundly affect our view of the cellular mechanisms underlying brain physiology and pathology.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…