The nano-meter scale organization and function of phosphoinositide signaling at central synapses

2014 Seed Grant
Xuelin Lou
Department of Neuroscience
University of Wisconsin

1) Lipid signaling plays an essential role in synaptic transmission and aberrant lipids signaling has been implicated in many brain diseases including AD, Down’s syndrome and epilepsy; however, we know very little about how lipids works at nanometer scales in the plasma membrane of neurons. We propose to develop and apply innovated super-resolution optical imaging to map the molecular topography of these key signaling molecules (PI(4,5)P2 and syntaxin1A) at nerve terminal membrane at nanometer precision. The proposed research will have a profound impact on synaptic biology and neuron communication. It will also have broad medical relevance beyond the cell biology of neurons, and help to develop better therapeutic rationales for a few complex brain diseases mentioned above.

2) We will establish a novel super-resolution optical imaging approach for lipid signaling study at nanometer precision, which improves the spatial resolution of imaging ~10 times compared with other modern light microscopy including confocal, two-photon or TIRF microscopy. This will open a new avenue toward cellular and molecular neuroscience. The novel approaches to acute manipulate local PIs in the PM of live cells may have broader application in the other relevant fields of lipid signaling. Preliminary data generated from this study will be critical for a successful federal project (RO1 or NSF).

Other Grants

Lindsay M. De Biase, Ph.D., University of California Los Angeles
The role of microglial lysosomes in selective neuronal vulnerability
Synapses, the sites of signaling between neurons in the brain, play essential roles in learning, memory, and the health of neurons themselves. An enduring mystery is why some neurons are…
How the nervous system constructs internal models of the external world
As animals navigate their environments, they construct internal models of the external sensory world and use these models to guide their behavior. This ability to incorporate ongoing sensory stimuli into…
Xiaojing Gao, Ph.D., Stanford University
When Neural Circuits Meet Molecular Circuits: Quantitative Genetic Manipulation with Single-cell Consistency
Cells are the building blocks of our bodies. We get sick when the cells “misbehave”. The way modern gene therapies work is to introduce genes, fragments of DNA molecules that…
Rafiq Huda, Ph.D., Rutgers University
Conducting the orchestra of movement—functional role of striatal astrocytes in health and disease
Movement requires coordinated activity across a large brain-wide network. The striatum is a particularly important part of this circuit; it integrates motor-related information from many distinct brain regions to regulate…