The Role of Microglial Lysosomes in Selective Neuronal Vulnerability

2021 Seed Grant
Linda M. De Biase, Ph.D.
University of California Los Angeles

Peter Pond Seed Grant

Synapses, the sites of signaling between neurons in the brain, play essential roles in learning, memory, and the health of neurons themselves. An enduring mystery is why some neurons are more vulnerable to synapse dysfunction, synapse loss, and neurodegenerative disease during aging. Microglia are immune-like cells that can influence synaptic function and may be critical for determining whether synapses and neurons remain healthy throughout the lifespan. We discovered that microglia in the midbrain, where vulnerable dopamine neurons reside, show different attributes from microglia in other brain regions. They can regulate dynamic changes in dopamine neuron synapse function and they “respond” to aging long before microglia in other brain regions. These early aging responses of midbrain microglia include cell proliferation and production of inflammatory factors that can be damaging to nearby synapses and neurons. Whether these regional differences in microglial features and microglial responses to aging give rise to regional differences in synapse integrity and neuronal vulnerability remains unknown. Published studies and Dr. De Biase’s preliminary data suggest that cellular organelles called lysosomes may be central controllers of regional differences in microglial attributes and responses to aging. A key challenge for study of microglia is that microglia are more difficult to manipulate genetically than other brain cells. In this proposal, Dr. De Biase’s lab will develop new approaches for genetic modification of microglia that will allow us to selectively alter multiple aspects of microglial lysosome function. They will define how these changes in microglial lysosome function impact synapse-relevant microglial attributes and synaptic function of nearby neurons. This work promises to uncover key factors that regulate synapse-relevant attributes of microglia throughout the lifespan and to reveal new strategies for protecting vulnerable populations of neurons.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…