Trace Amine-Associated Receptors by Thomas Bozza

Analysis of Trace Amine-Associated Receptor cluster deletion mice
2011 Seed Grant
Thomas Bozza, Ph.D.
Department of Neurobiology and Physiology
Northwestern University

The “trace amines” are normal chemicals found in the brain that have been associated with neurological disorders such as depression, schizophrenia, attention deficit hyperactivity disorder, and addiction. In the last 10 years, there have been major advances in our understanding of how trace amines contribute to normal and abnormal brain function. A family of specific receptors for trace amines was recently identified, the so-called “Trace Amine-Associated Receptors” or TAARs. TAARs are found in all mammals examined so far, including humans. The best described member of this receptor family, TAAR1, is found in the brain and is activated by trace amines, and by psychostimulants and drugs of abuse such as LSD, methamphetamine, and MDMA (ecstasy). As a result, TAAR1 is a focus of extensive research. Much less is known about the other members of the TAAR gene family (TAARs 2 through 9 in mouse), despite the fact that they may also function in neurological disorders. This proposal describes two complementary Aims: to test whether TAARs 2 through 9 are found in the mouse brain, and whether removing these receptors causes behavioral changes that are consistent with a role in neurological disorders. To do this, we are taking advantage of unique, genetically modified mouse strains that my lab recently generated to study olfactory function. Support for this proposal would allow my lab to leverage these currently existing genetic tools to pursue a new avenue of research that may have clinical relevance. The long-term goal of this work is to better understand how dysfunction of TAAR genes contributes to neurological disorders in humans.

Other Grants

Rebekah C. Evans, Ph.D., Georgetown University
In Vivo and Ex Vivo Dissection of Midbrain Neuron Activity During Exercise
Exercise is important for the health of the body and the mind. Exercise promotes learning and reduces symptoms of brain-related diseases such as Parkinson’s disease and Alzheimer’s disease. However, it…
William J. Giardino, Ph.D. Stanford University
Deciphering the Neuropeptide Circuitry of Emotional Arousal in Narcolepsy
This research project aims to investigate the neural mechanisms of a specific type of brain cell called neuropeptide neurons within a region of the brain’s amygdala network called the bed…
Howard Gritton, Ph.D., University of Illinois
Attention Mechanisms Contributing to Auditory Spatial Processing.
Our world is composed of a rich mixture of sounds. We often process sounds including speech in the presence of many other competing auditory stimuli (e.g., voices in a crowded…
Nora Kory, Ph.D., Harvard University
Elucidating the Fates and Functions of Lactate in the Brain
The human brain requires significant energy to function. Despite accounting for only 2% of our body weight, the brain consumes a substantial 20% of the body’s energy, relying on a…