Ultrafast optical recording of spiking activity in a zebrafish neural circuit

2016 Seed Grant
Yiyang Gong, Ph.D.
Duke University

Understanding how the brain’s many neurons coordinate their activity to perform behavioral tasks is a significant problem that, if solved, can lead to new developments in understanding and treating mental illness. Solving this problem requires careful examination of neural circuits in action. Current recording technologies are only partially up to this task, as they are unable to measure neural activity with sufficient spatial and temporal resolution. Existing electrical measurements are fast, but are insufficiently dense to measure many neurons within complex neural circuits. Similarly, existing optical measurements can perform parallel recordings on large scales, but cannot directly follow spiking activity. In order to better understand the details of coordinated neural activity, we need new tools that observe the spiking activity from many individual neurons simultaneously. My recent development of genetically encoded voltage sensors enables fluorescence microscopy to report both spiking and subthreshold voltage activity from individual neurons. Here, I propose to directly image the spikes from many neurons within the zebrafish brain, which serves as a model system similar to the human brain. We will use the unique capabilities of voltage imaging to analyze the spiking activity of a set of neurons that converts visual sensory information into motor output. In the long-term, my proposed research will serve as the gateway technology to access the spiking activity of all neurons in model animals, and to study how this population code drives behavior. In addition, voltage imaging in animal models is poised to study how genetic mutations lead to changes in spiking activity, which subsequently leads to neurological diseases; quantifying these currently unknown effects of genetic diseases will help uncover specific neural targets for clinical treatment.

Other Grants

José Manuel Baizabal Carballo, Ph.D., Indiana University Bloomington
Heterochromatin Mechanisms of Cortical Expansion
Neurodevelopmental disorders, such as autism and schizophrenia, are frequently associated with mutations in genes that encode chromatin-modifying enzymes. A subset of these mutations is thought to disrupt compacted chromatin (heterochromatin),…
Jessica L. Bolton, Ph.D., Georgia State University
Chemogenetic Tools in Microglia as a Novel Therapeutic Approach for Brain Disorders
All humans are born with a unique combination of genes, which contribute greatly to who we are. However, early-life experiences such as trauma or hardship, particularly during the first few…
Junyue Cao, Ph.D., The Rockefeller University
Elucidate the Molecular and Cellular Targets of Caloric Restriction in Rejuvenating Aged Mammalian Brain
As we age, the brain’s ability to function declines, increasing the risk of cognitive impairments and neurological diseases like Alzheimer’s and Parkinson’s. Our research investigates how caloric restriction (CR), a…
Vasileios Christopoulos, Ph.D., University of Southern California
Understanding the Mechanisms of Micturition in the Brain and Spinal Cord
This research aims to better understand how the brain and spinal cord work together to control urination, a process known as micturition. In healthy individuals, this process is carefully coordinated…